Division-induced DNA double strand breaks in the chromosome terminus region of Escherichia coli lacking RecBCD DNA repair enzyme
نویسندگان
چکیده
Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type) or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant.
منابع مشابه
Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome
It was recently reported that the recBC mutants of Escherichia coli, deficient for DNA double-strand break (DSB) repair, have a decreased copy number of their terminus region. We previously showed that this deficit resulted from DNA loss after post-replicative breakage of one of the two sister-chromosome termini at cell division. A viable cell and a dead cell devoid of terminus region were thus...
متن کاملRecombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate.
To examine the physiological effects of DNA replication arrest at the terminus (Ter), we constructed a replication-blocked Escherichia coli strain so that both bidirectional replication forks would be impeded at two flanking Ter sites, one artificial and the other natural. While the blocked strain grew slightly more slowly than a control strain, it had abnormal phenotypes similar to those of E....
متن کاملHomologous Recombination by the RecBCD and RecF Pathways
In all cells, genetic recombination is used to repair DNA breaks and, as a result, genetic information is exchanged between homologous DNA molecules. Discontinuities in DNA strands, specifically double-strand DNA breaks and single-strand DNA gaps, attract the enzymes responsible for the initiation of homologous recombination. In wild-type Escherichia coli, two distinct pathways are responsible ...
متن کاملHow RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist's view.
The repair of DNA double-strand breaks (DSBs) is essential for cell viability and important for homologous genetic recombination. In enteric bacteria such as Escherichia coli, the major pathway of DSB repair requires the RecBCD enzyme, a complex helicase-nuclease regulated by a simple unique DNA sequence called Chi. How Chi regulates RecBCD has been extensively studied by both genetics and bioc...
متن کاملRecBCD enzyme and the repair of double-stranded DNA breaks.
The RecBCD enzyme of Escherichia coli is a helicase-nuclease that initiates the repair of double-stranded DNA breaks by homologous recombination. It also degrades linear double-stranded DNA, protecting the bacteria from phages and extraneous chromosomal DNA. The RecBCD enzyme is, however, regulated by a cis-acting DNA sequence known as Chi (crossover hotspot instigator) that activates its recom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017